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The humble Slinky™ spring toy
has been known for decades as
an invaluable tool for demonstrating
wave motions, both longitudinal and
transverse. An even simpler situation
involving its physical properties is its
static configuration when suspended
vertically from one end. Such a situation
was considered briefly by Heard and
Newbyl ina paper entitled “Behavior of
a Soft Spring,” but their chief concern
was with the vertical oscillations of
such a spring with masses attached, and
they did not explore the static equilib-
rium experimentally.

Theory

Assume a Slinky of mass M with a
total of N turns. Let its relaxed length
(neither stretched nor compressed) be
Lg. Suppose that, when suspended un-
der gravity from one end, it has a total
length L. The tension developed at any
point in the Slinky must be such as to
support the weight of the part of the
spring toy below that point. In order to
analyze this situation, let us measure
vertical distance z from the bottom end
of the Slinky. Let us also count the num-
ber of turns, n, from this bottom point.
Let the tension in the Slinky at z be 7(z);
then we must have:

T(z) = %Mg O

Consider now a very short section of
the Slinky between z and z + Az (Fig. 1).
The tension 7(z) arises from the stretch-
ing of this section. Let us suppose that,
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Fig. 1. Diagram of suspended Slinky. The
tension T(z) must support the weight of
the portion of the Slinky below that level.

in the unstretched state, this section has
a length Azg If the Slinky can be as-
sumed to conform to Hooke’s law, we
shall have:
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where k is a constant with the dimen-
sions of force. (Note that it is not the
same as a spring constant—measured
for example in N/m—for which the
symbol k is also often used.) Rearrang-
ing the previous equation, we have:

I)
Az = Az [1+ kz]

We also need to satisfy the condition
that the change of tension between z and z
+Azbe such as to support the weight of this
short section of the toy. If we denote the
mass per unit length of the unstretched

Slinky as p, (= M/Ly), the mass of this
section is equal to 1, Az, and so we

have:

8 Mg Az

AT = A it
EHo A% = T ok

Thus we have:

I(z)
[1+=2]ar = guyae
Integrating this, we get:

O+ (TOF = gz O

Now, for z = L, we have T(L) = Mg =

Lyn,s. Substituting this condition in
Eq. (2) gives us the value of the constant &:
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Using this value of &, Eq. (2) can be
rewritten as:
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Finally, with the help of Eq. (1), we
canconvert Eq. (3) into arelation giving
the height of the nth turn above the
bottom of the Slinky as a function of n.
Since the total mass M of the Slinky is
equal to L, 1, Eq. (1) can be rewritten:

L
T = 582

Substituting this expression for 7(z) in
Eq. (3) leads at once to the result:

=_9
L=pN" N

L . (L-Ly 2 “
[This equation, with appropriate
changes of symbols and coordinates,
corresponds to Eq. (7) of Ref. 1.}

Thus, if our assumption that Hooke’s
law applies to the extended Slinky is
valid, the graph of z,, vs n should be a
parabola. Also, if we consider sections
of the Slinky between the turns num-
bered n and n + An, where An is some
fixed number (e.g., 5), the graph of
Az/An vs n (where Az =z, , —2)

should be a straight line:

Az Ly 2L-L) An )
A - N + e (n+ 2)
Experiments

Observations were made on a stand-
ard Slinky. It was not convenient to use
quite its whole length; measurements
were made on a total of 85 turns, which
when suspended vertically extended to
atotal length of 1.95 m. The unextended
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Fig. 2. Experimental graphs of z, vs n and of Az/An vs n +An/2 (with An = § in our case).
These graphs correspond to Egs. (4) and (5) in the text.

length, with the Slinky placed horizon-
tally on a table, was about 0.10 m. (But
this value is somewhat history-depend-
ent.) Figure 2 shows graphs of z,, vs n
and Az/An vs n +An/2 (for An =5). The
calculated slope of the latter line is

2(L - Ly)/N% which is equal t0.0005 1

m/turns?; the experimental value is
0.00050 m/turns”.

It is really striking that the Slinky, in
extension, obeys Hooke’s law so well,
conforming remarkably closely to the
predictions of Eqs. (4) and (5). Whereas
most springs deviate sertously from the
Hooke’s-law relation for strains
(AL/Lj) of less than unity (perhaps

much less), the sections of the Slinky
near its top end in this experiment had
strains of the order of 20; that is, the
separation of successive turns was of the
order of 20 times the separation in the
relaxed state. This linearity is all the
more surprising when one considers
that, in compression, the Slinky is very

highly nonlinear and cannot be com-
pressed to much less than its relaxed
length.

The observations reported here are of
course very easy to do, but they provide
a rather nice and unusual exercise in
static equilibrium, especially if the data
are obtained in the absence of any prior
knowledge of the theory and the student
is left with the challenge of analyzing and
interpreting the results. One final remark:
the center of gravity of the Slinky is of
course located at the turn rn = N/2. Students
can measure the corresponding value of z,
and (if they are ambitious) can compare
this to what would be predicted by the
theoretical formulas.

(It seems unlikely that this exercise
has not already been invented by others.
I would be grateful for any information
about this.)
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